Math, asked by simrananjali0297, 5 months ago

if p(x) =ax2 + bx +c is a quadratic polynomial, then what is the relation of -b/a with zeros of p(x)?​

Answers

Answered by shadowsabers03
10

Let \displaystyle\sf {x_1} and \displaystyle\sf {x_2} be the zeroes of the equation \displaystyle\sf {ax^2+bx+c=0.}

Let \displaystyle\sf {k} be a non - zero constant. Then we have,

\displaystyle\sf{\longrightarrow k(x-x_1)(x-x_2)=ax^2+bx+c}

\displaystyle\sf{\longrightarrow k(x^2-x_1x-x_2x+x_1x_2)=ax^2+bx+c}

\displaystyle\sf{\longrightarrow k(x^2-(x_1+x_2)x+x_1x_2)=ax^2+bx+c}

\displaystyle\sf{\longrightarrow kx^2-k(x_1+x_2)x+kx_1x_2=ax^2+bx+c}

Equating corresponding coefficients,

\displaystyle\sf{\longrightarrow k=a\quad\quad\dots(1)}

and,

\displaystyle\sf{\longrightarrow -k(x_1+x_2)=b}

From (1),

\displaystyle\sf{\longrightarrow -a(x_1+x_2)=b}

\displaystyle\sf {\longrightarrow\underline {\underline {x_1+x_2=-\dfrac {b}{a}}}}

That is, the sum of zeroes is equal to the ratio \displaystyle\sf {-\dfrac {b}{a}.} This is the relation.

Also,

\displaystyle\sf{\longrightarrow kx_1x_2=c}

From (1),

\displaystyle\sf{\longrightarrow ax_1x_2=c}

\displaystyle\sf{\longrightarrow x_1x_2=\dfrac {c}{a}}

We get the product of roots is equal to the ratio \displaystyle\sf {\dfrac {c}{a}} too.

Similar questions