if p(x) =ax7+bx5+cx3+3 and p(7)=2,p(-7)=?
Answers
p(x) = ax⁷ + bx⁵ + cx³ + 3
Now, put -x in place of x
p(-x) = a(-x)⁷ + b(-x)⁵ + c(-x)³ + 3
= -ax⁷ - bx⁵ - cx³ + 3
= -ax⁷ - bx⁵ - cx³ - 3 + 6
= -(ax⁷ + bx⁵ + cx³ + 3) + 6
Notice that the term in bracket is actually p(x)!!
→ p(-x) = -p(x) + 6
In the question p(7) is given
so finding p(-7) is a piece of cake now
p(-7) = -p(7) + 6
→ p(-7) = -2 + 6 = 4
Hence the answer is four.
Step-by-step explanation:
Consider the given function.
f(x)=ax^7+bx^3+cx−5
Since, f(−7)=7
So,
f(−7) = a(−7)^7 + b(−7)^3 + c(−7) − 5=7
−7^7xa − 7^3xb − 7c − 5 = 7
−(7^7xa + 7^3xb + 7c + 5) = 7
7^7xab + 7^3xbb+ 7c + 5 = −7
7^7xa + 7^3xb + 7c = -12. ..................(1)
Put x=7
f(7)=a(7)^7 + b(7)^3 + c(7) - 5
f(7)=7^7 x a + 7^3xb + 7c - 5
f(7)=−12−5 from equation (1)
f(7)=−17
Hence, this is the answer.