If p(x) is a polynomial of degree 3 with leading coefficient 1006. Also p(1)=1, p(2)=3, p(3)=5. What is the value of p(5) :
Answers
Given: p(x) is a polynomial of degree 3 with leading coefficient 1006.
To find: The value of p(5)
Solution:
- Now we have given p(x) of degree 3, it has leading coefficient 1006.
- We have provided with p (1) = 1, p (2) = 3, p(3) = 5
- Let the equation be:
p(x) = 1006x³ + bx² + cx + d
- Now p(1) will be:
p(1) = 1006 + b + c + d = 1
b + c + d = -1005 ....................(i)
- p(2) will be:
p(2) = 1006(8) + 4b + 2c + d = 3
4b + 2c + d = -8045 ....................(ii)
- p(3) will be:
p(3) = 1006(27) + 9b + 3c + d = 5
9b + 3c + d = -27157 ....................(iii)
- Now, (ii) - (i), we get:
3b + c = -7040....................(iv)
- Now, (iii) - (ii), we get:
5b + c = -19112....................(v)
- Now, (v) - (iv), we get:
2b = -12072
b = -6036
- Putting b in (iv), we get:
c = 11068
- Putting b and c in (i), we get:
d = -6037
- So the equation formed is:
p(x) = 1006x³ - 6036 x² + 11068x - 6037
- Now p(5) will be:
p(5) = 1006(5)³ - 6036(5)² + 11068(5) - 6037
p(5) = 24153
Answer:
So the value of p(5) is 24153.