Math, asked by RaghavSinghania, 1 year ago

If (p-x):(q-x) be the duplicate ratio of p:q then show that : 1/p + 1/q = 1/x.

Please solve it....

Answers

Answered by abhi178
117
we know,
 if a
² : b² is the duplicate  ratio of a : b
         now a/c to question,
(p -x) : (q - x) is the duplicate ratio of p : q 
so, from above rule,
(p -x ) : (q - x ) = p
² : q²
(p -x)/(q -x ) = p²/q²
  q²(p - x) = p²(q - x)
q²p -q²x = p²q -p²x 
q²p - p²q = q²x - p²x 
pq(q - p) = (q - p)(q + p)x 
pq = (q + p)x 
pq/x = (q + p)
1/x = (q + p)/pq = q/pq + p/pq 
1/x = 1/p + 1/q 

           hence, 1/x = 1/p + 1/q 
                                                     hence proved
Answered by nileshpansari
4

Answer:

i dont know the answer

Step-by-step explanation:

Similar questions