Math, asked by 123navendu, 9 months ago

If p (x) =sinx(sin3x+3) +cosx(cos3x+4)+1/2 sin^2 2x+5 find the range of p (x)

Answers

Answered by pulakmath007
4

SOLUTION

TO DETERMINE

The range of

 \displaystyle \sf{p(x) =  \sin x( { \sin}^{3}x + 3)  +  \cos x( { \cos}^{3}x + 4)   +  \frac{1}{2}  { \sin}^{2} 2x + 5}

FORMULA TO BE IMPLEMENTED

 \sf{ -  \sqrt{ {a}^{2} +  {b}^{2}  } \leqslant a \sin x +  b \cos x \leqslant  \sqrt{ {a}^{2} +  {b}^{2}  }  }

EVALUATION

 \displaystyle \sf{p(x) =  \sin x( { \sin}^{3}x + 3)  +  \cos x( { \cos}^{3}x + 4)   +  \frac{1}{2}  { \sin}^{2} 2x + 5}

 \displaystyle \sf{ = ( { \sin}^{4}x + 3 \sin x)  + ( { \cos}^{4}x + 4 \cos x)   +  \frac{1}{2} {(2 \sin x \cos x)}^{2}  + 5}

 \displaystyle \sf{ = ( { \sin}^{4}x +  { \cos}^{4}x) + (3 \sin x + 4 \cos x)   +   2 { \sin}^{2} x  \:  { \cos}^{2}x   + 5}

 \displaystyle \sf{ = ( { \sin}^{4}x +   2 { \sin}^{2} x  \:  { \cos}^{2}x + { \cos}^{4}x) + (3 \sin x + 4 \cos x)      + 5}

 \displaystyle \sf{ = {(  { \sin}^{2} x  \:   + { \cos}^{2}x )}^{2}  + (3 \sin x + 4 \cos x)      + 5}

 \displaystyle \sf{ = {( 1 )}^{2}  + (3 \sin x + 4 \cos x)      + 5}

 \displaystyle \sf{ =  (3 \sin x + 4 \cos x) + 6}

Now

 \sf{ -  \sqrt{ {3}^{2} +  {4}^{2}  } \leqslant 3 \sin x +  4 \cos x \leqslant  \sqrt{ {3}^{2} +  {4}^{2}  }  }

 \sf{ \implies -  \sqrt{ 25 } \leqslant 3 \sin x +  4 \cos x \leqslant  \sqrt{25  }  }

 \sf{ \implies -5 \leqslant 3 \sin x +  4 \cos x \leqslant  5  }

 \sf{ \implies -5 + 6 \leqslant 3 \sin x +  4 \cos x  + 6\leqslant  5  + 6 }

 \sf{ \implies 1\leqslant 3 \sin x +  4 \cos x  + 6\leqslant  11 }

 \sf{ \implies 1\leqslant p(x)\leqslant  11 }

Hence the required Range of the function is

 \sf{ \{ \:  p(x) \:  :   \: 1\leqslant p(x)\leqslant  11  \:  \}}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. . A relation R in the set of real numbers R defined as R = { (a,b): √a = b} is a

function or not. Justify

https://brainly.in/question/29064001

2. If a={1,2,3} and b={1,4,6,9} and r is a relation from a to b defined by x is greater than y,then the range of r is

https://brainly.in/question/3083734

Similar questions