if P(x) =x^3 +3x^2+2x +4, find P(4)+P(-1)+3P(0)
Answers
Answer:
i didn't understand how it
ANSWER:
Given:
- P(x) = x³ + 3x² + 2x + 4
To Find:
- Value of P(4) + P(-1) + 3P(0)
Solution:
We are given that,
⇒ P(x) = x³ + 3x² + 2x + 4
Now, we need to find the value of,
⇒ P(4) + P(-1) + 3P(0) -----(1)
We will solve each term separately and then place them in (1).
1) P(4)
⇒ P(x) = x³ + 3x² + 2x + 4
Substituting x with 4,
⇒ P(4) = (4)³ + 3(4)² + 2(4) + 4
⇒ P(4) = 64 + 3(16) + 8 + 4
⇒ P(4) = 64 + 48 + 12
⇒ P(4) = 124
2) P(-1)
⇒ P(x) = x³ + 3x² + 2x + 4
Substituting x with -1,
⇒ P(-1) = (-1)³ + 3(-1)² + 2(-1) + 4
⇒ P(-1) = -1 + 3(1) - 2 + 4
⇒ P(-1) = -1 + 3 + 2
⇒ P(-1) = 4
3) P(0)
⇒ P(x) = x³ + 3x² + 2x + 4
Substituting x with 0,
⇒ P(0) = (0)³ + 3(0)² + 2(0) + 4
⇒ P(0) = 0 + 3(0) + 0 + 4
⇒ P(0) = 0 + 4
⇒ P(0) = 4
Now,
⇒ P(4) + P(-1) + 3P(0)
Substituting values,
⇒ (124) + (4) + 3(4)
⇒ 124 + 4 + 12
⇒ 140
Therefore, value of P(4) + P(-1) + 3P(0) is 140.