Math, asked by navi7290, 9 months ago

If p(x) = x^3-4x +3 evalute p(2) - p(-1 ) +p(1/2)

Answers

Answered by NilotpalSwargiary
3

Answer:

given \\ p(x) =  {x}^{3}  - 4x + 3 \\  =  > p(2) =  {2}^{3}  - 4 \times 2 + 3  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 8 - 8 + 3  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 3 \\  =  > p( - 1) =  { (- 1)}^{3}  - 4( - 1) + 3 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  - 1 + 4 + 3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 6 \\  =  > p( \frac{1}{2} ) =  { (\frac{1}{2}) }^{3}  - 4 \times  \frac{1}{2}  + 3 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{8}  - 2 + 3 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{9}{8}  \\ therefore \: p(2) - p( - 1) + p( \frac{1}{2} ) \\  = 3 - 6 +  \frac{9}{8}  \\  =  -  \frac{15}{8}

Similar questions