if p(x)=x² - 2√2x + 1, then find value of p(2√2).
Answers
Answered by
55
- 1
Given :- p(x)=x² - 2√2x + 1
To Find :- The value of p(2√2) ?
Concept used :-
- The value of a polynomial can be calculated by substituting the variable with given number .
Solution :-
given polynomial is :-
→ p(x) = x² - 2√2x + 1
variable is :-
→ x
So, in order to find p(2√2), substituting x = 2√2 in the given polynomial p(x) we get,
→ p(2√2) = (2√2)² - 2√2•(2√2) + 1
→ p(2√2) = (2)²•(√2)² - (2×2)•(√2×√2) + 1
→ p(2√2) = 4•2 - 4•2 + 1
→ p(2√2) = 8 - 8 + 1
→ p(2√2) = 0 + 1
→ p(2√2) = 1 (Ans.)
Therefore, the value of given polynomial at 2√2 is equal to 1 .
Hence, The value of p(2√2) is equal to 1 .
Learn more :-
solution of x minus Y is equal to 1 and 2 X + Y is equal to 8 by cross multiplication method
https://brainly.in/question/18828734
Answered by
6
Step-by-step explanation:
Maths my passion ......
Attachments:
Similar questions