Math, asked by sweety1979mtrcom, 6 months ago

if p(x) = x2 - 4x + 3 evaluate p(x) - p (-1) +p(1/2)​

Answers

Answered by aryan073
1

Step-by-step explanation:

p(x) =  {x}^{2}  - 4x + 3

p(x) - p( - 1) + p( \frac{1}{2} )

 =  {x}^{2}  - 4x + 3 - ( {( - 1)}^{2}  - 4( - 1) + 3)) +   ({ \frac{1}{2} })^{2}  - 4 \times  \frac{1}{2}  + 3

 =  {x}^{2}  - 4x + 3 - ((1  + 4 + 3) +  \frac{1}{4}  - 2 + 3

 {x}^{2}  - 4x + 3 - (8 +  \frac{1}{4} + 1)

  =  {x}^{2}  - 4x + 3 - ( \frac{32 + 1 + 4}{4} )

 =  {x}^{2}  - 4x + 3 - ( \frac{37}{4})

 {4x}^{2}  - 16x + 12 - 37 = 0

4 {x}^{2}  - 16x - 25 = 0

Similar questions