If p(x)=x2-x-1 find the value of p(x) if p(x)=-1? a) -3 b) 1 c) -1 please give me the answer it's urgent
Answers
Answer:
\text{Hence, the value is }\frac{1}{2}(p(-1)+p(1))\text{ is 0.}Hence, the value is
2
1
(p(−1)+p(1)) is 0.
Step-by-step explanation:
\text{Given the polynomial }p(x)=x^3-x^2+x+1Given the polynomial p(x)=x
3
−x
2
+x+1
\text{we have to find the value of }\frac{1}{2}(p(-1)+p(1))we have to find the value of
2
1
(p(−1)+p(1))
p(x)=x^3-x^2+x+1p(x)=x
3
−x
2
+x+1
Put x=-1 and x=1
p(-1)=(-1)^3-(-1)^2+(-1)+1=-1-1-1+1=-2p(−1)=(−1)
3
−(−1)
2
+(−1)+1=−1−1−1+1=−2
p(1)=(1)^3-(1)^2+(1)+1=1-1+1+1=2p(1)=(1)
3
−(1)
2
+(1)+1=1−1+1+1=2
\frac{1}{2}(p(-1)+p(1))
2
1
(p(−1)+p(1))
=\frac{1}{2}(-2+2)=0=
2
1
(−2+2)=0
\text{Hence, the value is }\frac{1}{2}(p(-1)+p(1))\text{ is 0.}Hence, the value is
2
1
(p(−1)+p(1)) is 0.
Mark as brainliest......please....I need three
Answer:
Constrained Maximize(expr, { x1(low1, up1), x2(low2, up2), . ... Finds the values for the x arguments, specified as a list, ... the value of which to calculate the desirability.