Math, asked by Anonymous, 8 months ago

If p(X) = x3 -x2 + 3x + 4 then find p(1) and p(-2)

A triangle, a parallelogram and a rectangle have the same base and are situated between the same parallels. The ratio of their areas is?

Answers

Answered by ThakurRajSingh24
24

Solution(1) :-

Given that P(x) = x³ + 3x² – 2x + 4

p(-2) = (-2)³ + 3(-2)² – 2(-2) + 4

= -8 + 12 + 4 + 4

= 12

p(1) = (1)³ + 3(1)² – 2(1) + 4

= 1 + 3 – 2 + 4

= 6

p(0) = 0³ + 3(0)² – 2(0) + 4

= 4

p(1) + p(-2) + p(0) = 12 + 6 + 4 = 22.

Solution (2) :-

The area of a triangle is half the area of a parallelogram if they are standing on the same base and between the same parallels.

Hence, the ratio of the area of the triangle to that of the parallelogram =1 : 2.

Answered by Anonymous
1

Step-by-step explanation:

Bro please mark as brillant

Attachments:
Similar questions