If p(x) = x³-x²+x+1, then find the value of (1)+(−1)+(2)\2
Answers
Answered by
0
Step-by-step explanation:
x^3 +x^2 +x +1 =0
=> x^2(x+1) + 1(x+1)=0
=> (x+1)(x^2 +1)=0, Therefore ,
Either x+1=0 or x^2+1=0, if x+1=0 => x=-1
If x^2 +1=0 => x^2 = -1 , x^2 = i^2 =>x= √(i^2)
x=±i , then the required solution
x= -1 , +i , -i
Answered by
1
Given the polynomial p(x)=x
3
−x
2
+x+1
\text{we have to find the value of }\frac{1}{2}(p(-1)+p(1))we have to find the value of
2
1
(p(−1)+p(1))
p(x)=x^3-x^2+x+1p(x)=x
3
−x
2
+x+1
Put x=-1 and x=1
p(-1)=(-1)^3-(-1)^2+(-1)+1=-1-1-1+1=-2p(−1)=(−1)
3
−(−1)
2
+(−1)+1=−1−1−1+1=−2
p(1)=(1)^3-(1)^2+(1)+1=1-1+1+1=2p(1)=(1)
3
−(1)
2
+(1)+1=1−1+1+1=2
\frac{1}{2}(p(-1)+p(1))
2
1
(p(−1)+p(1))
=\frac{1}{2}(-2+2)=0=
2
1
(−2+2)=0
\text{Hence, the value is }\frac{1}{2}(p(-1)+p(1))\text{ is 0.}Hence, the value is
2
1
(p(−1)+p(1)) is 0.
Similar questions