Math, asked by swalihfirdous00, 9 months ago

if p(x) =xx+5x+2 then p(2) + p(3) is​

Answers

Answered by pritambehera2004
1

Given :-p(x)=x^2+5x+2

Let value of x be 2 p(2)=(2)^2+5(2)+2 =4+10+2=16 Let value of x be 3 p(3)=(3)^2+5(3)+2= 9+15+2=26 So, p(2)+p(3)=16+26=42 [If this answer helped you then please mark me as brainliest ]

Answered by ZzyetozWolFF
3

Correct Question:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \:  \:  \: p( {\red{x}}) =  {\red{x}}{\red{x}} + 5x + 2

Then find :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \:  \:  \:p( {\green{2}}) + p{ (\blue{3}})

Answer:

42

Step-by-step explanation:

Finding p(2)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \: p ( {\green{2}}) = ( {\green{2}})({\green{2}}) + 5({\green{2}}) \:  + 2

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \:  \:  \:p( {\green{2}}) = 2.2 + 10 + 2

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \: 16

We now know p(2) = 16

Finding p(3)

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  \:  \:  \:  p( {\blue{3}}) =( {\blue{3}}) ( {\blue{3}}) \:  + 5( {\blue{3}}) + 2

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  \:  \:  \: p( {\blue{3}}) = 3 \times 3 + 15 + 2

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  \:  \:  \: p( {\blue{3}}) = 26

We now know p(3) = 26

It has asked us to find the sum of p(2) and p(3)

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  \:  \:  \: p( {\green{2}}) + p( {\blue{3}}) = 16 + 26

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  \:  \:  \: p( {\green{2}}) + p( {\blue{3}}) = 42

polynomials :-

  • polynomials : Polynomial are variable based dialect in the language of maths.

  • In a common language , polynomials are defined as a string of variables and numbers put together.

  • Highest power of a polynomial is called degree of polynomial.

  • A constant polynomial is nothing but a monomial with degree zero.

  • Equation: A condition or a constraint placed on x and y coordinates.

  • Curve: A union of points that satisfy a particular condition.

  • Remainder theorem: When p(x) is divided by (x - a) then the remainder is given by p(a).
Similar questions