Math, asked by veergoma2, 2 months ago

If p(x)=z² -3√2 z-1 then p(3√2) is

Answers

Answered by ItzQuickWitted
1

\huge\bf\underline\pink{Qᴜᴇsᴛɪᴏɴ}

If p(ᴢ)=z² -3√2+z-1 then p(3√2) is?

\huge\bf\underline\pink{Aɴsᴡᴇʀ}

Given:- p(z)= z² -3√2+ z-1

To find:- p(3√2)

Proof:- p(z)= z² -3√2+ z-1

p(3√2) = (3√2)² -3√2+(3√2)-1

(3)²×(√2)²-1

9×2-1

\bold\red{17}

Answered by ItzEnchantedBoy
13

Answer:

Given:- p(z)= z² -3√2+ z-1

Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)

Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1

Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1p(3√2) = (3√2)² -3√2+(3√2)-1

Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1p(3√2) = (3√2)² -3√2+(3√2)-1(3)²×(√2)²-1

Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1p(3√2) = (3√2)² -3√2+(3√2)-1(3)²×(√2)²-19×2-1

Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1p(3√2) = (3√2)² -3√2+(3√2)-1(3)²×(√2)²-19×2-1\bold\red{17}17

Similar questions