If p(x)=z² -3√2 z-1 then p(3√2) is
Answers
If p(ᴢ)=z² -3√2+z-1 then p(3√2) is?
Given:- p(z)= z² -3√2+ z-1
To find:- p(3√2)
Proof:- p(z)= z² -3√2+ z-1
p(3√2) = (3√2)² -3√2+(3√2)-1
(3)²×(√2)²-1
9×2-1
Answer:
Given:- p(z)= z² -3√2+ z-1
Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)
Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1
Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1p(3√2) = (3√2)² -3√2+(3√2)-1
Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1p(3√2) = (3√2)² -3√2+(3√2)-1(3)²×(√2)²-1
Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1p(3√2) = (3√2)² -3√2+(3√2)-1(3)²×(√2)²-19×2-1
Given:- p(z)= z² -3√2+ z-1To find:- p(3√2)Proof:- p(z)= z² -3√2+ z-1p(3√2) = (3√2)² -3√2+(3√2)-1(3)²×(√2)²-19×2-1\bold\red{17}17