Math, asked by theRockstar580, 8 months ago

If p=[ x00 0y0 00z ] and q=[a00 0b0 00c] Show that the product of the given diagonal matrices is commutative

Answers

Answered by amitnrw
0

Given : p = \left[\begin{array}{ccc}x&0&0\\0&y&0\\0&0&z\end{array}\right]   q = \left[\begin{array}{ccc}a&0&0\\0&b&0\\0&0&b\end{array}\right]

To show :  Product of given Diagonal matrices is Commutative

Solution:

Commutative Property  

p * q  =  q * p

p = \left[\begin{array}{ccc}x&0&0\\0&y&0\\0&0&z\end{array}\right]

q = \left[\begin{array}{ccc}a&0&0\\0&b&0\\0&0&b\end{array}\right]

p * q =  \left[\begin{array}{ccc}x&0&0\\0&y&0\\0&0&z\end{array}\right]  \left[\begin{array}{ccc}a&0&0\\0&b&0\\0&0&c\end{array}\right]

p * q =  \left[\begin{array}{ccc}ax&0&0\\0&by&0\\0&0&cz\end{array}\right]

q * p  =  \left[\begin{array}{ccc}a&0&0\\0&b&0\\0&0&c\end{array}\right]  \left[\begin{array}{ccc}x&0&0\\0&y&0\\0&0&z\end{array}\right]

q * p  = \left[\begin{array}{ccc}ax&0&0\\0&by&0\\0&0&cz\end{array}\right]

\left[\begin{array}{ccc}ax&0&0\\0&by&0\\0&0&cz\end{array}\right]  = \left[\begin{array}{ccc}ax&0&0\\0&by&0\\0&0&cz\end{array}\right]

p * q  = q * p

Hence given Diagonal matrices is  commutative

Learn More:

Use commutative and distributive properties to simplify 4/5*-3/8-3/8 ...

https://brainly.in/question/11002509

take any two integers and verify the commutative property of ...

https://brainly.in/question/9138377

Similar questions