Math, asked by lucky7240, 1 year ago

if p1,p2,p3 are altitudes of the triangle ABC,from the vertices and delta is the area of triangleABCthen 1/p1,1/p2,1/p3=?​

Answers

Answered by madlad
1

formula is half to base into height

Answered by shailendrachoubay216
2

\frac{1}{P_{1}}+\frac{1}{P_{2}}+\frac{1}{P_{3}}=\frac{s}{\Delta }

Step-by-step explanation:

1. Let area of triangle = Δ

2. Let

   P_{1} is perpendicular to side AB.

   P_{2} is perpendicular to side BC.

   P_{3} is perpendicular to side CA.

3. Area of triangle =\frac{1}{2}\times side\times altitude

   \Delta =\frac{1}{2}\times AB\times P_{1}

   Which can also be written as

  \frac{1}{P_{1}}=\frac{AB}{2\times \Delta }   ...1)

4. Area of triangle =\frac{1}{2}\times side\times altitude

   \Delta =\frac{1}{2}\times BC\times P_{2}

   Which can also be written as

  \frac{1}{P_{2}}=\frac{BC}{2\times \Delta }   ...2)

5. Area of triangle =\frac{1}{2}\times side\times altitude

   \Delta =\frac{1}{2}\times CA\times P_{3}

   Which can also be written as

  \frac{1}{P_{3}}=\frac{CA}{2\times \Delta }   ...3)

6. Adding equation 1,2 and 3. We get

\frac{1}{P_{1}}+\frac{1}{P_{2}}+\frac{1}{P_{3}}=\frac{AB}{2\times \Delta }+\frac{BC}{2\times \Delta }+\frac{CA}{2\times \Delta }

On solving

\frac{1}{P_{1}}+\frac{1}{P_{2}}+\frac{1}{P_{3}}=\frac{AB+BC+CA}{2\times \Delta }      ...4)

7. Where Semi perimeter (s)=\frac{AB+BC+CA}{2}    ...5)

8. From equation 4 and 5

 \frac{1}{P_{1}}+\frac{1}{P_{2}}+\frac{1}{P_{3}}=\frac{s}{\Delta }

 

 

Similar questions