Math, asked by PINU396, 1 month ago

if p1//x = q1/y = r1/z and pqr = 1 . Prove that x+y+z = 0

Answers

Answered by mathdude500
5

Appropriate Question :-

If

\rm :\longmapsto\: {\bigg[p\bigg]}^{\dfrac{1}{x} } = {\bigg[q\bigg]}^{\dfrac{1}{y} } = {\bigg[r\bigg]}^{\dfrac{1}{z} }  \: and \: pqr = 1

Prove that x + y + z = 0

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {\bigg[p\bigg]}^{\dfrac{1}{x} } = {\bigg[q\bigg]}^{\dfrac{1}{y} } = {\bigg[r\bigg]}^{\dfrac{1}{z} }

Let assume that

\rm :\longmapsto\: {\bigg[p\bigg]}^{\dfrac{1}{x} } = {\bigg[q\bigg]}^{\dfrac{1}{y} } = {\bigg[r\bigg]}^{\dfrac{1}{z} } = k

So,

\rm :\longmapsto\: {\bigg[p\bigg]}^{\dfrac{1}{x} }  =  k \: \bf\implies \:p =  {(k)}^{x}

Also,

\rm :\longmapsto\: {\bigg[q\bigg]}^{\dfrac{1}{y} }  =  k \: \bf\implies \:q =  {(k)}^{y}

Also,

\rm :\longmapsto\: {\bigg[r\bigg]}^{\dfrac{1}{z} }  =  k \: \bf\implies \:r =  {(k)}^{z}

Further, given that

\rm :\longmapsto\:pqr = 1

On substituting the values of p, q and r, we get

\rm :\longmapsto\: {k}^{x}  \times  {k}^{y}  \times  {k}^{z}  = 1

We know,

\boxed{ \tt{ \:  {a}^{m} \times  {a}^{n}  =  {a}^{m + n}}}

So, using this, we get

\rm :\longmapsto\: {k}^{x + y + z}  = 1

\rm :\longmapsto\: {k}^{x + y + z}  =  {k}^{0}

\bf\implies \:x + y + z = 0

Hence, Proved

More to know :-

\boxed{ \tt{ \:  {a}^{m} \times  {a}^{n}  =  {a}^{m + n}}}

\boxed{ \tt{ \:  {a}^{m} \div  {a}^{n}  =  {a}^{m  -  n}}}

\boxed{ \tt{ \:  {( {a}^{n} )}^{m} = {a}^{mn}}}

\boxed{ \tt{ \:  {a}^{ - n} =  \frac{1}{ {a}^{n} }}}

\boxed{ \tt{ \:  {x}^{0}  = 1}}

Answered by XxitsmrseenuxX
1

Answer:

Appropriate Question :-

If

\rm :\longmapsto\: {\bigg[p\bigg]}^{\dfrac{1}{x} } = {\bigg[q\bigg]}^{\dfrac{1}{y} } = {\bigg[r\bigg]}^{\dfrac{1}{z} }  \: and \: pqr = 1

Prove that x + y + z = 0

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {\bigg[p\bigg]}^{\dfrac{1}{x} } = {\bigg[q\bigg]}^{\dfrac{1}{y} } = {\bigg[r\bigg]}^{\dfrac{1}{z} }

Let assume that

\rm :\longmapsto\: {\bigg[p\bigg]}^{\dfrac{1}{x} } = {\bigg[q\bigg]}^{\dfrac{1}{y} } = {\bigg[r\bigg]}^{\dfrac{1}{z} } = k

So,

\rm :\longmapsto\: {\bigg[p\bigg]}^{\dfrac{1}{x} }  =  k \: \bf\implies \:p =  {(k)}^{x}

Also,

\rm :\longmapsto\: {\bigg[q\bigg]}^{\dfrac{1}{y} }  =  k \: \bf\implies \:q =  {(k)}^{y}

Also,

\rm :\longmapsto\: {\bigg[r\bigg]}^{\dfrac{1}{z} }  =  k \: \bf\implies \:r =  {(k)}^{z}

Further, given that

\rm :\longmapsto\:pqr = 1

On substituting the values of p, q and r, we get

\rm :\longmapsto\: {k}^{x}  \times  {k}^{y}  \times  {k}^{z}  = 1

We know,

\boxed{ \tt{ \:  {a}^{m} \times  {a}^{n}  =  {a}^{m + n}}}

So, using this, we get

\rm :\longmapsto\: {k}^{x + y + z}  = 1

\rm :\longmapsto\: {k}^{x + y + z}  =  {k}^{0}

\bf\implies \:x + y + z = 0

Hence, Proved

More to know :-

\boxed{ \tt{ \:  {a}^{m} \times  {a}^{n}  =  {a}^{m + n}}}

\boxed{ \tt{ \:  {a}^{m} \div  {a}^{n}  =  {a}^{m  -  n}}}

\boxed{ \tt{ \:  {( {a}^{n} )}^{m} = {a}^{mn}}}

\boxed{ \tt{ \:  {a}^{ - n} =  \frac{1}{ {a}^{n} }}}

\boxed{ \tt{ \:  {x}^{0}  = 1}}

Similar questions