Math, asked by jassipanwar, 2 months ago

If (p²+1) (q²+1) +36 =12 (p+q) then (p^3 +q^3 ) =​

Answers

Answered by pulakmath007
2

SOLUTION

GIVEN

 \sf{( {p}^{2}  + 1)( {q}^{2}  + 1) + 36 = 12(p + q)}

TO DETERMINE

The value of

 \sf{ {p}^{3}  +  {q}^{3} }

EVALUATION

 \sf{( {p}^{2}  + 1)( {q}^{2}  + 1) + 36 = 12(p + q)}

 \sf{ \implies \:  {p}^{2}  {q}^{2}  + {p}^{2}  +  {q}^{2} + 1+ 36 = 12(p + q)}

 \sf{ \implies \:   {p}^{2}  +  {q}^{2} +12(p + q)  -  2pq + 36 +  {p}^{2}  {q}^{2}  - 2pq + 1= 0}

 \sf{ \implies \:   {(p + q - 6)}^{2} +  {(pq - 1)}^{2}  = 0}

We know if the sum of the squares of two real numbers are zero then they are separately zero

 \sf{  {(p + q - 6)}^{2}  = 0 \:  \: and \:  \:  {(pq - 1)}^{2}  = 0}

 \sf{ \implies \:   {(p + q - 6)}  = 0 \:  \: and \:  \:  {(pq - 1)}  = 0}

 \sf{ \implies \:   p + q  = 6 \:  \: and \:  \:pq  = 1}

 \sf{ {p}^{3}  +  {q}^{3} }

 \sf{  = {(p + q)}^{3}   - 3pq(p + q) }

 \sf{  = {(6)}^{3}   - 3 \times 6 \times 1 }

 \sf{  = 216 - 18 }

 \sf{  = 198 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the value of the expression a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

2. to verify algebraic identity a2-b2=(a+b)(a-b)

https://brainly.in/question/10726280

Similar questions