if p2+4q2+9r2=2pq+6qr+3pr then prove that p3+8q3+27r3=18pqr
Answers
Answered by
0
Answer:
12+3++473448248₱7-74+2₱38₱883836(48&)9₱+₱8₱23
Answered by
1
Answer:
Step-by-step explanation: Given that p²+4q²+9r² = 2pq+6gr + 3pr...(1)
We know that
a³ + b³ + c³ −3abc
= (a+b+c)(a² + b² + c² -ab-bc-ca) ....(2)
Here, a = p,b=2q and c=3r.
Then using the above identity (2) we have,
p³ +8q3+27r³-3xpx2qx3r
= (p+2q+3r) (p²+4q²+9r2-2pq-6qr-3pr)
→ p³ +8q³ +27r³ – 18pqr
= (p+2q+3r)(p²+4q²+9r² - 2pq-6qr-3pr)
→ p³+8q³ +27r³ - 18pqr = (p+2q+3r)x0 [p²+4q²+9r² = 2pq+6qr+3pr]
p3+8q3+27r3 - 18pqr=0
→p3+8q3+27r3
= 18pqr
HENCE PROVED!
Similar questions
English,
10 days ago
Biology,
10 days ago
Math,
20 days ago
Computer Science,
9 months ago
Math,
9 months ago