Math, asked by mandeepkaurR, 1 year ago

if PA and PB all two tangents drawn to the circle with centre O such that angleBPA=120 degree,prove that OP=2PB.

Answers

Answered by zeenat
5
In Δ APO and Δ BPO ;        OP=OP[common]   ;                 AP=BP[tangent]   ;         angle PAO=angle PBO                                                                                             by   SAS rule,                     ΔAPO congruent to Δ BPO    ;  angle APO= angle BPO =1/2 angle APB =1/2 × 120  =60 ; In   Δ BPO  BP/OP= Cos60³    ;  BP/OP= 1/2               SO, we get  OP=2PB     
Answered by pals
0
n Δ APO and Δ BPO ;        OP=OP[common]   ;                 AP=BP[tangent]   ;         angle PAO=angle PBO                                                                                             by   SAS rule,                     ΔAPO congruent to Δ BPO    ;  angle APO= angle BPO =1/2 angle APB =1/2 × 120  =60 ; In   Δ BPO  BP/OP= Cos60³    ;  BP/OP= 1/2               SO, we get  OP=2PB      
Similar questions