Physics, asked by kamlakainat5757k2, 8 months ago

if particle of mass 5 mg move with a speed of 8 meter per second then the de broglie wave length will be

Answers

Answered by Ekaro
9

12th/Physics

Dual nature of Radiation and Matter

Answer :

Mass of particle = 5mg

(5mg = 5 × 10^{-6}kg)

Velocity of particle = 8m/s

We have to find de-beoglie wavelength of particle.

_________________________________

◈ De-broglie wavelength associated with object of mass m moving with velocity v is given by

  • λ = h / mv

where, h denotes plank's constant

\dashrightarrow\sf\:\lambda=\dfrac{h}{mv}

\dashrightarrow\sf\:\lambda=\dfrac{6.626\times 10^{-34}}{(5\times 10^{-6})(8)}

\dashrightarrow\sf\:\lambda=0.165\times 10^{-28}

\dashrightarrow\:\boxed{\bf{\purple{\lambda=1.65\times 10^{-29}\:m}}}

Cheers!


amitkumar44481: Perfect :-)
Answered by nilesh102
13

{ \bf{ \underline{ \red{ \underline{ \red{Question}}}}  :  - }}

  • If particle of mass 5 mg move with a speed of 8 meter per second then the de broglie wave length will be

{ \bf{ \underline{ \red{ \underline{ \red{Solution}}}}  :  - }}

{ According to question }

{ \sf{ \dashrightarrow{ \small{ \purple{Mass  \: of  \: particle \:  ( m)   }}}}}

{ \sf{ =  \: 5 \: mg \:  = 5 \times  {10}^{ - 6} \: kg }}

{ \sf{ \dashrightarrow{ \small{ \purple{velocity  \: of  \: particle \:  (v)  }}}} = 8 \:m/s  }

de Broglie wavelength

{de Broglie wavelength :- The wavelength (λ) that is associated with an object in relation to its momentum and mass is known as de Broglie wavelength. A particle’s de Broglie wavelength is usually inversely proportional to its force. }

{ \sf{ \dashrightarrow{ \red{de \:  Broglie  \: wavelength \: { \bf{\purple{ (\lambda)}}}}}} =  \:  \frac{h}{mv} }

where

{ \sf{ \dashrightarrow{\:  \:  { \purple{Planck’s constant}}}}  =  \: h}

{ \sf{ \dashrightarrow{h = \:  \:  { \purple{6.626× {10}^{ - 34}  \: Js}}}} }</p><p>

{ According to question }

To find de Broglie wavelength

{ \dashrightarrow{ \bf{ \red{ \lambda}}}{ \bf{  \: = \:  \frac{h}{mv}  }}}

{ \dashrightarrow{ \bf{ \red{ \lambda}}}{ \bf{  \: = \:  \frac{6.626× {10}^{ - 34} }{(5 \times  {10}^{ - 6} ) \times( 8)}  }}}

{ \dashrightarrow{ \bf{ \red{ \lambda}}}{ \bf{  \: = \:  \frac{6.626× {10}^{ - 34} }{40 \times  {10}^{ - 6} }  }}}

{ \dashrightarrow{ \bf{ \red{ \lambda}}}{ \sf{  \: = \:  1.6565\times  {10}^{ - 29}  \: m}}}</p><p>

{ \sf{ \underline{Hence, { \red{de  \: Broglie  \: wavelength }} \: will  \: be}}}

{ \bf{ \red{ \underline{1.6565 \times  {10}^{ - 29}  \: m.}}}}

i hope it helps you.

Similar questions