Math, asked by royg05132, 6 months ago

if phi = 2x3y2z4 find div.grad phi​

Answers

Answered by pulakmath007
16

SOLUTION

GIVEN

 \sf{ \phi = 2 {x}^{3}  {y}^{2}  {z}^{4} }

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{ div \: grad \:  \phi  =  \nabla \: . \nabla \:  \phi =    \frac{{ \partial}^{2}  \phi}{ \partial  {x}^{2} } + \frac{{ \partial}^{2}  \phi}{ \partial  {y}^{2} } +  \frac{{ \partial}^{2}  \phi}{ \partial  {z}^{2} } }

TO DETERMINE

 \sf{ div \: grad \:  \phi }

EVALUATION

Here it is given that

 \sf{ \phi = 2 {x}^{3}  {y}^{2}  {z}^{4} }

Now

 \displaystyle \sf{  \frac{ \partial \phi}{ \partial x}  = 6 {x}^{2} {y}^{2} {z}^{4}   }

 \displaystyle \sf{  \frac{{ \partial}^{2}  \phi}{ \partial  {x}^{2} }  = 12 x {y}^{2} {z}^{4}   }

 \displaystyle \sf{  \frac{ \partial \phi}{ \partial y}  = 4 {x}^{3} y {z}^{4}   }

 \displaystyle \sf{  \frac{{ \partial}^{2}  \phi}{ \partial  {y}^{2} }  = 4 {x}^{3}  {z}^{4}   }

 \displaystyle \sf{  \frac{ \partial \phi}{ \partial z}  = 8 {x}^{3} {y}^{2} {z}^{3}   }

 \displaystyle \sf{  \frac{{ \partial}^{2}  \phi}{ \partial  {z}^{2} }  = 24 {x}^{3}   {y}^{2} {z}^{2}   }

Hence

 \sf{ div \: grad \:  \phi }

 \sf{  =  \nabla \: . \nabla \:  \phi }

 \displaystyle \sf{ =   \frac{{ \partial}^{2}  \phi}{ \partial  {x}^{2} } + \frac{{ \partial}^{2}  \phi}{ \partial  {y}^{2} } +  \frac{{ \partial}^{2}  \phi}{ \partial  {z}^{2} }  }

 \displaystyle \sf{   = 12 x {y}^{2} {z}^{4}  + 4 {x}^{3}  {z}^{4}    + 24 {x}^{3}   {y}^{2} {z}^{2} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

2. Prove that div grad r^n = n(n+1) r^n-2

https://brainly.in/question/24594228

Similar questions