Math, asked by anishservice12p825x0, 1 year ago

If phi+theta=60°
So, Prove That Sin(120°-theta)= Cos(30°-phi)

Answers

Answered by GuntasDhillon
53
Here is the ans
Pls mark it brainliest pls if you like it
Attachments:

GuntasDhillon: here in the 4th step we use the identity sin theta =cos( 90 - theta)
Answered by jitumahi435
29

Given:

Ф + θ = 60°

To prove that: \sin (120-\theta) = \cos(30-\phi).

L.H.S. = \sin (120-\theta)

Ф + θ = 60°

⇒ θ = 60°  - Ф

= \sin (120-(60-\phi))

= \sin (120-60+\phi)

= \sin (60+\phi)

Using the trigonometric identity:

\cos A = \sin (90-A)

= \cos (90-60-\phi)

= \cos(30-\phi)

= R.H.S., proved.

Thus, \sin (120-\theta) = \cos(30-\phi), proved.

Similar questions