If pi/13 = alpha so prove that cos 3 alpha + cos 5 alpha +2 cos alpha cos 9 alpha = 0
Answers
Answered by
0
Answer:
L.H.S.
2cos
13
π
cos
13
9π
+cos
13
3π
+cos
13
5π
Using that,
2cosAcosB=cos(A+B)+cos(A−B)
2cos
13
π
cos
13
9π
+cos
13
3π
+cos
13
5π
=cos(
13
π
+
13
9π
)+cos(
13
π
−
13
9π
)+cos
13
3π
+cos
13
5π
=cos
13
10π
+cos(−
13
8π
)+cos
13
3π
+cos
13
5π
∴cos(−θ)=cosθ
=cos
13
10π
+cos
13
8π
+cos
13
3π
+cos
13
5π
=cos(π−
13
3π
)+cos(π−
13
5π
)+cos
13
3π
+cos
13
5π
=−cos
13
3π
−cos
13
5π
+cos
13
3π
+cos
13
5π
=0
R.H.S
Hence, proved.
Step-by-step explanation:
please mark brainiest
Similar questions