If pm stands for mpm then 1+1p1+2p2+3p3+.....+npn equal to
Answers
Answered by
15
Please see the attachment
Attachments:
Answered by
7
1 + 1* ¹P₁ + 2 * ²P₂ + 3 * ³P₃ +..........................+ nⁿPₙ = ⁽ⁿ⁺¹⁾P₍ₙ₊₁₎
Step-by-step explanation:
1+1p1+2p2+3p3+.....+npn
= 1` + 1* ¹P₁ + 2 * ²P₂ + 3 * ³P₃ +..........................+ nⁿPₙ
= 1 + 1 * 1! + 2 * 2! + 3 * 3! + .............................+ n * n!
(n + 1)! - n! = (n+1)n! - n! = (n + 1 - 1)n! = n * n!
= 1 + (2! - 1!) + (3! - 2!) + (4! - 3!) + ..........................+ ((n + 1)! - n!)
= ( 1 - 1!) + (2! - 2!) + (3! - 3!) + (4! - 4!) +.....................+ (n! - n!) + (n + 1)!
= (n + 1)!
= ⁽ⁿ⁺¹⁾P₍ₙ₊₁₎
1` + 1* ¹P₁ + 2 * ²P₂ + 3 * ³P₃ +..........................+ nⁿPₙ = ⁽ⁿ⁺¹⁾P₍ₙ₊₁₎
Learn more:
if nPr = 6720 and nCr=56 find n and r - Brainly.in
brainly.in/question/13753160
Sum of the series 20c0+20c1+20c2+....+ 20c10 is
https://brainly.in/question/1867037
Similar questions