Math, asked by sheshantgupta, 2 months ago

if point t divides the segments AB with A(-7,4) and B (-6,-5) in the ratio 7:2,find the coordinates of t.

Answers

Answered by ImperialGladiator
5

Answer:

Coordinates of t  \bf \bigg( \dfrac{ - 56}{9}  \bigg) \: - 3

Explanation:

Given that,

The point t divides a line segment AB with A(-7, 4) and B(-6, -5) in the ratio 7 : 2

By section formula :-

If t divides the line segment AB in the ratio \bf m_1 : m_2

{ \longrightarrow \sf t = \bigg(\dfrac{m_1x_1 + m_2x_2}{m_1 + m_2}\bigg)\bigg(\dfrac{m_1y_1 + m_2y_2}{m_1 + m_2}\bigg) \:  }

Where,

\sf \bull \: m_1 =7  \: and  \: m_2 = 2 \\

\bull  \sf  \:  x_1=  - 7 \: and  \: x_2 =  - 6\\

\sf  \bull \: y_1  = 4\: and  \: y_2 =  - 5

On substituting the values,

 \sf  \longrightarrow \: t = \bigg( \dfrac{7( - 6) + 2( - 7)}{7 + 2}  \bigg) \bigg( \dfrac{7( - 5) + 2(4)}{7 + 2}  \bigg)

 \sf  \longrightarrow \: \bigg( \dfrac{ - 42  - 14}{9}  \bigg) \bigg( \dfrac{ -35 + 8}{9}  \bigg)

 \sf  \longrightarrow \: \bigg( \dfrac{ - 56}{9}  \bigg) \bigg( \dfrac{ - 27}{9}  \bigg)

 \sf  \longrightarrow \: \bigg( \dfrac{ - 56}{9}  \bigg) \: - 3

{ \underline{ \sf {\therefore{The \: coordinates \: of \: point  \:  {\bf{t}} \: is \: { \bf \:  \frac{ - 56}{9}  \:  - 3}}}}}

_____________________

Note:

If any line segment AB is divided by a point t(x, y) the coordinates of the point t is given by the section formula.

Section formula :

{ \longrightarrow \sf t = \bigg(\dfrac{m_1x_1 + m_2x_2}{m_1 + m_2}\bigg)\bigg(\dfrac{m_1y_1 + m_2y_2}{m_1 + m_2}\bigg) \:  }

Similar questions