if point (x,y) is equidistant from the point (5,1) and(-1,5) prove 3x=2y
Answers
Answered by
1
Distance of (x,y) from (5,1)= √((x-5)² + (y-1)²)
Distance of (x,y) from (-1,5)= √((x+1)² + (y-5)²)
Distance of (x,y) from (5,1) = Distance of (x,y) from (-1,5)
√((x-5)² + (y-1)²) = √((x+1)² + (y-5)²)
Squaring on both sides
(x-5)² + (y-1)² = (x+1)² + (y-5)²
x²+25-10x+y²+1-2y=x²+1+2x+y²+25-10y
(because (a+b)²=a²+b²+2ab)
cancelling same terms on both sides
-10x-2y=2x-10y
-10x-2x=-10y+2y
-12x=-8y
-4(3x)=-4(2y)
3x=2y
daksh44:
thnx bro...
Similar questions