Math, asked by ps337445, 1 year ago

if points (a,o) ,(0,b) and( x,y) are collinear then prove that x/a+y/b=1

Answers

Answered by priyanka1434
78
Here is your answer


#MAXER#
Attachments:
Answered by mysticd
74

Answer:

 If \: given \: three \: points\\are \: collinear ,\: then \: \frac{x}{a}+\frac{y}{b}=1

Step-by-step explanation:

Let A(a,0),B(0,b) and C(x,y) are collinear .

Slope of AB = Slope of BC

\frac{b-0}{0-a}=\frac{y-b}{x-0}

\implies \frac{b}{-a}=\frac{y-b}{x}

\implies bx=(-a)(y-b)

\implies bx=-ay+ab

\implies bx+ay=ab

/* Divide each term by ab ,we get

\implies \frac{bx}{ab}+\frac{ay}{ab}=\frac{ab}{ab}

\implies \frac{x}{a}+\frac{y}{b}=1

Therefore,

 If \: given \: three \: points\\are \: collinear ,\: then \: \frac{x}{a}+\frac{y}{b}=1

•••♪

Similar questions