Math, asked by saloni192230, 3 months ago

if points ( k , 2k ) ; (3k ,3k ) and ( 3 ,1 ) are collinear then find value of k.​

Answers

Answered by VishnuPriya2801
13

Answer:-

Given:-

(k , 2k) ; (3k , 3k) and (3 , 1) are collinear points i.e., they lie on the same line.

We know that;

If three points are collinear, when the area of the triangle formed by them is 0 square units.

Also;

 \sf \: Area \: of \: a \: triangle =   \frac{1}{2}  \begin{vmatrix} \sf x_1 - x_2& \sf \: x_1 - x_3 \\  \\  \sf \: y_1 - y_2& \sf \: y_1 - y_3 \end{vmatrix}

Let;

  • x₁ = k

  • x₂ = 3k

  • x₃ = 3

  • y₁ = 2k

  • y₂ = 3k

  • y₃ = 1

According to the question;

 \implies \sf \:  \frac{1}{2}  \begin{vmatrix} \sf k - 3k& \sf \: k - 3 \\  \\  \sf  \:2k - 3k & \sf \: 2k - 1 \:  \end{vmatrix} = 0 \\  \\  \\ \implies \sf \:\begin{vmatrix} \sf  - 2k& \sf \: k - 3 \\  \\  \sf  \: - k & \sf \: 2k - 1 \:  \end{vmatrix} = 0 \times 2 \\  \\  \\ \implies \sf \:  |( - 2k)(2k - 1) - ( - k)(k - 3)|  = 0 \\  \\  \\ \implies \sf | - 4 {k}^{2} + 2k - ( -  {k}^{2}  + 3k) |  = 0 \\  \\  \\ \implies \sf \:  | - 4 {k}^{2} + 2k +  {k}^{2} - 3k |  = 0 \\  \\  \\ \implies \sf \:  | - 3 {k}^{2}   - k|  = 0 \\  \\  \\ \implies \sf \: 3 {k}^{2}  + k= 0 \\  \\  \\ \implies \sf \: k(3k + 1) = 0 \\  \\  \\ \implies \sf \: k = 0 \:  \:  \: (or) \:  \: 3k + 1 = 0 \\  \\  \\ \implies \boxed{\sf \:k = 0 \:  \: (or) \:  \:  \frac{ - 1}{3}}

The value of k is - 1/3 or 0.

Similar questions