Math, asked by ajay2582005, 1 year ago

If points P(0, 3) Q(-2, y) and R(-1, 4) are the vertices of a ∆PQR right angled at
P. Find the value of y and also find area of ∆PQR.​

Answers

Answered by suskumari135
3

Answer: y = 3  , Area of triangle = 1

Step-by-step explanation:

Let the points are P(0,3) , Q(-2,y) and R(-1,4)

By distance formula PQ = \sqrt{(y-3)^{2} +(-2-0)^{2} }

                                       = \sqrt{(y-3)^{2}+4 }

By distance formula QR = \sqrt{(-2+1)^{2}+(y-4)^{2}

                                      = \sqrt{(y-4)^{2}+1 }

By Distance formula PR = \sqrt{(-1-0)^{2}+(4-3)^{2}  }

                                      = \sqrt{2}

By Pythagoras theorem

PR² +QR² = PQ²

2+(y-4)²+1 = (y-3)² +4

2+1 + y² + 16 -8y = y²+9 -6y +4

-2y = -6

y =3

Hypotenuse = PQ = 2

Base = QR = \sqrt{2}

Height = PR = \sqrt{2}

Area of triangle = 1/2 x b x h

                          = 1/2 x \sqrt{2} x \sqrt{2}

                           = 1

Answered by Lokeshaswale8281
0

Answer:

ANSWER is attach with attachment

Plz mark as brilliantlist...

If you like the answer....

Attachments:
Similar questions