Math, asked by Ehab2003, 1 year ago

if polynomial p(t)=t⁴-t³+t²+6,then find p(-1)

Answers

Answered by kiki9876
35
hope my answer helps
Attachments:

Ehab2003: thanks kiki
kiki9876: ...Welcome
Answered by pulakmath007
8

If p(t) = t⁴ - t³ + t² + 6 then p(-1) = 9

Given :

The polynomial p(t) = t⁴ - t³ + t² + 6

To find :

The value of p(-1)

Solution :

Step 1 of 2 :

Write down the given polynomial

The given polynomial is p(t) = t⁴ - t³ + t² + 6

Step 2 of 2 :

Find the value of p(-1)

p(t) = t⁴ - t³ + t² + 6

Putting t = - 1 we get

\displaystyle \sf{p( - 1) =  {( - 1)}^{4} -    {( - 1)}^{3}  +  {( - 1)}^{2} + 6  }

\displaystyle \sf{ \implies p( - 1) =  1 -    ( - 1)  + 1 + 6  }

\displaystyle \sf{ \implies p( - 1) =  1 + 1+ 1 + 6  }

\displaystyle \sf{ \implies p( - 1) =  9  }

The value of p(-1) is 9

Similar questions