Math, asked by daris52, 1 month ago

If polynomial p (x) = x^3 + ax^2 + bx - 84 is exactly divisible by x^2 + x-12, find the values of a and b.​

Answers

Answered by soniakaushik5651
0

Step-by-step explanation:

x²+x-12 is a factor of this polynomial

x²+x-12=0

2x²-12=0

2x²=12

x²=12/2

x²=6

x=√6

PUT THE VALUES AS GIVEN

p(x)=+ax²+bx-84=0

p(6)=(6)³+a(6)²+b(6)-84=0

p(6)= 66+6a+b√6-84=0

p(6)= 6+6a+b√6=84/6

p(6)= 6+6a+b√6=24

p(6)=6+a+b√6=24/6

p(6)= 6+a+b√6=4

Answered by hukam0685
2

Step-by-step explanation:

Given:If

p(x) =  {x}^{3}  + a {x}^{2}  + bx - 84 \\

is completely divisible by

 {x}^{2}  + x - 12 \\

To find: Find the value of a and b.

Solution:

Divide p(x) by x^2+x-12

 {x}^{2}  + x - 12) {x}^{3}  + a {x}^{2}  + bx - 84(x + (a - 1) \\  {x}^{3}  +  {x}^{2}  - 12x\:\:  \:  \:\:\:\:\:\:\:\:\\  -  \:\:\:  \:  \:\:\:  \:  \:  \:  -  \:\:  \:  \:  \:  \:  \:  + \:  \:\:\: \\  -  -  -  -  -  -  -  -  -  \\ (a - 1) {x}^{2}  + (b + 12)x - 84\:\:\:\: \\ (a - 1) {x}^{2}  + (a - 1)x - 12(a - 1) \\  -  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  -  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  +  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  -  -  -  -  -  -  -  -  -  -  -   -  -  - -  \\ (b + 12 - a + 1)x - 84 + 12a - 12 \\

if p(x) is divisible by x^2+x-12 then remainder will be zero

(b - a + 13)x -96 + 12a = 0 \\  \\

remainder will be zero only if

b - a + 13 = 0 \\  \\ b - a =  - 13...eq1 \\  \\

or if

-96 + 12a = 0 \\  \\ 12a =  96 \\  \\ a =  \frac{96}{12}  \\  \\ a = 8 \\  \\

put the value of a in eq1

b - 8=  - 13 \\  \\ b =  - 13+8 \\  \\ b = - 5 \\  \\

Final answer:

\bold{a = 8} \\  \\ \bold{b =  -5 }\\  \\

Hope it helps you.

To learn more on brainly:

1) if (X + 2) is a factor of X⁵ - 4a²x + 2 X +2a+3 find a.

https://brainly.in/question/12783153

2) If one of the Zeroes of the quadratic polynomials (a-1)x+ ax+1= -3, then find the value of a.

https://brainly.in/question/41118278

Similar questions