Physics, asked by spborkar1808, 8 months ago

if position varies with time
as x = 4t^3+2t^2+2t+9
find the average . velocity from t=
2sec to t = 5sec.​

Answers

Answered by Anonymous
26

Answer:

 \boxed{\mathfrak{Average \ velocity \ (v_{avg}) = 172 \ m/s}}

Explanation:

Position w.r.t. time:

 \rm x = 4 {t}^{3}  + 2 {t}^{2}  + 2t + 9

 \rm At  \: t_1 = 2s, \\  \rm x_1 = 4( {2}^{3} ) + 2( {2}^{2} ) + 2 \times 2 + 9 \\  \\ \rm  = 4 \times 8 + 2 \times 4 + 4 + 9 \\  \\  \rm = 32 + 8 + 4 + 9 \\  \\ \rm  = 53  \: m \\  \\  \rm At  \: t_2 = 5s, \\  \rm x_2 = 4( {5}^{3} ) + 2( {5}^{2} ) + 2 \times 5 + 9 \\  \\ \rm  = 4 \times 125 + 2 \times 25 + 10 + 9 \\  \\  \rm = 500 + 50 + 10 + 9 \\  \\ \rm  = 569 \: m

 \rm Displacement  \: (\Delta x)  = x_2 - x_1  \\ \\ \rm \Delta x= 569 - 53 \\ \\ \rm \Delta x= 516

 \rm Time \:  interval  \: (\Delta t) = t_2 - t_1 \\ \\ \rm \Delta t = 5 - 2 \\ \\  \rm \Delta t =3s

Average velocity is defined as the change in position or displacement of object divided by the time interval.

 \bf \implies v_{avg} = \dfrac{\Delta x}{\Delta t} \\  \\  \rm \implies v_{avg} = \dfrac{516}{3} \\  \\  \rm \implies v_{avg} = 172 \: m {s}^{ - 1}

Answered by Anonymous
26

Average velocity = 172 m/s.

Explanation:

__________________________

Position varies with time :

↪ x = 4t³ + 2t² + 2t + 9

[ At t = 2sec ]

x_1 = 4(2)³ + 2(2)² + 2(2) + 9

x_1 = 4(8) + 2(4) + 4 + 9

 x_1 = 32 + 8 + 13

\tt\bold{x_1 = 59m}

[ At t = 5sec ]

x_2 = 4(5)³ + 2(5)² + 2(5) + 9

x_2 = 4(125) + 2(25) + 10 + 9

x_2 = 500 + 50 + 19

\tt\bold{x_2= 569m}

__________________________

As we know that,

 \tt  \bigstar \: \bold{Displacement (Δx) = x_2 -  x_1}

↪ Δx = 569 - 59

\tt\bold{Δx = 516m}

\tt \bigstar \bold{Time \:  interval (Δt) =  t_2 -  t_1}

↪ Δt = 5 - 2

\tt\bold{Δt = 3sec}

__________________________

Now, we know that,

 \tt \:  \bigstar \bold{Average  \: velocity =  \frac{Displacement(Δx)}{Time \: Interval(Δt) }}

↪Average velocity = 516/3

\large { \boxed{  \red {\frak{Average \:  velocity = 172ms {}^{ - 1} }}}}

__________________________

Similar questions