If power series has radius of convergence r, then radius of convergence of an z^ 2n
Answers
Answered by
1
8down voteaccepted
(i) Let un=z3n2nun=z3n2n so
|un+1un|=2n|z|32n+2→|z|3<1⟺|z|<1|un+1un|=2n|z|32n+2→|z|3<1⟺|z|<1
so
R=1R=1
(ii) Let vn=(2n+i)(z−i)nvn=(2n+i)(z−i)n so
|vn+1vn|=|(z−i)(2n+1+i)2n+i|→2|z−i|<1⟺z∈D(i,12)|vn+1vn|=|(z−i)(2n+1+i)2n+i|→2|z−i|<1⟺z∈D(i,12)
so
R=12R=12
(iii) Let wn=zn!wn=zn! so
|wn+1wn|→ℓ=0⟺|z|<1|wn+1wn|→ℓ=0⟺|z|<1
so
R=1
Anonymous:
Thanks!! :-)
Similar questions