Math, asked by rithish598, 21 days ago

If pq = -6 and 16p2+ 16q2= 208, find the value of (4p + 4q)2?

Answers

Answered by LaeeqAhmed
1

 \sf \purple{given}

 \sf pq =  - 6

 \sf 16 {q}^{2}  + 16 {p}^{2}  = 208

 \implies \sf  {(4q)}^{2}  + {(4p)}^{2}  = 208

 \blue{ \boxed{ {a}^{2} +  { b}^{2}  =  {( a+b )}^{2}  - 2ab}}

 \implies \sf  {(4q + 4p)}^{2}   - 2(4q)(4p)= 208

 \implies \sf  {(4p + 4q)}^{2}   - 32pq= 208

\implies \sf  {(4p + 4q)}^{2}   - 32( - 6)= 208

\implies \sf  {(4p + 4q)}^{2}   +   192= 208

\implies \sf  {(4p + 4q)}^{2}     = 208  - 192

 \orange{\therefore \sf  {(4p + 4q)}^{2}     =  16}

HOPE IT HELPS!!

Similar questions