Math, asked by ComedyQueen, 15 days ago

If PQ = 7 cm and QR = 3RS = 6 cm, find the perimeter of the cyclic quadrilateral PQRS.​

Answers

Answered by mamtameena18480
1

Step-by-step explanation:

24 cm

In △PQR,

∠PQR=90

(Angle in a semi circle)

PR

2

=PQ

2

+QR

2

(Pythagoras theorem)

PR

2

=7

2

+6

2

PR=

85

Now, In △PRS

∠PSR=90

(Angle is a semi circle)

PR

2

=PS

2

+SR

2

85=PS

2

+4

PS=

81

=9

Thus, perimeter of the quadrilateral = PS+SR+QR+PQ = 9+2+6+7=24 cm

Answered by XxSonaxX
203

Step-by-step explanation:

Question:-

The following figure shows a circle with PR as its diameter. If PQ = 7 cm and QR = 3RS = 6 cm, find the perimeter of the cyclic quadrilateral PQRS.

Answer:-

Given:-

  • PQ = 7 cm and
  • QR = 3RS = 6 cm

To find:-

  • the perimeter of the cyclic quadrilateral PQRS.

Solution:-

In  \:  \: the \:  \:  figure,

PQRS \:  \:  is \:  \:  a \:  \:  cyclic \:  \:  quadrilateral  \:  \\ in  \:  \: which \:  \:  PR \:  \:  is \:  \:  a \:  \:  diameter

PQ \:  =  \: 7 cm

QR \:  = \:  3 RS  \: =  \: 6 cm

 3 RS  \: =  \: 6 cm  \\  RS  \: =  \: 2 cm

Now \:  \:  in  \:  \: ΔPQR,

∠Q = 90° \:  \:   (Angles  \: in  \: a \:  semi \:  circle)

∴ PR {}^{2}  = PQ {}^{2}  \:  +  QR {}^{2}   \:  \:  \:  \:

(Pythagoras \:  \:  theorem )

 = 7 {}^{2}  \:  + \:  6 {}^{2}

 = 49 + 36

 = 85

Again \:  \:  in \:  \:  right  \:  \:  Δ PSQ, \: PR {}^{2} =   \:  PS {}^{2}  \: +   RS {}^{2}

 =  >  \: 85 \:  =  \: PS {}^{2}  \:  +  \: 2 {}^{2}

 =  >  \: PS { }^{2}  \:  = 85 - 4 \\  = 81 \\  = (9) {}^{2}

∴ \: PS \:  = 9cm

Now,  \:  \: perimeter \:  \:  of  \:  \: quad  \:  \: PQRS \:

 = PQ  \:  +   \: QR \:  + \:   RS   \: +  \: SP

 =  \: (7 \:  +  \: 9  \: + \:  2  \: + \:  6) \: cm

= 24cm

Hence, the perimeter of the cyclic quadrilateral PQRS is 24 cm.

Attachments:
Similar questions