if pq is parallel to pr, qp || rl, angle rqt=38' and angle qtl=75' , find angle prq and angle pqr in the figure given below;
Answers
Answered by
1
Answer:
Acc. exterior angle property,
38°+angle QRT = 75°
angleQRT = 37
As PQ||RL ,
angle PQR = 37°
Acc. angle sum property in triangle PQR ,
90°+37°+anglePRQ = 180°
=> anglePRQ= 53°
anglePRQ = 53° and angleQRT = 37°
Hope this answer helps you out.
Answered by
3
Answer:
GIVEN :-
PQ ⟂ PR.
PQ || RL.
∠RQT = 38°.
∠QTL = 75°.
TO FIND :-
The value of x and y.
SOLUTION :-
➳ ∠QTL + ∠QTR = 180°. [ Linear Pair ]
➳ 75° + ∠QTR = 180°
➳ ∠QTR = 180° - 75°
➳ ∠QTR = 105°.
✮ In ∆ QRT By angle sum property,
➠ ∠RQT + ∠QRT + ∠QTR = 180°
➠ ∠QRT + 38° + 105° = 180°
➠ ∠QRT + 143° = 180°
➠ ∠QRT = 180° - 143°
➠ ∠QRT = 37°
✭ Value of x,
➳ ∠P + ∠R = 180°. [ Allied angles ]
➳ 90° + ∠QRT + x = 180°
➳ 90° + 37° + x = 180°
➳ 127° + x = 180°
➳ x = 180° - 127°
➳ x = 53°
✭ Value of y,
➠ ∠RPQ + ∠PRQ + ∠PQR = 180°
➠ 90° + 53° + y = 180°
➠ y = 180° - 143
➠ y = 37°.
Similar questions