if PQ parallel to ST,angle PQR=110 and angle RST=130,
find angle QRS
Answers
Answer:
Step-by-step explanation:
Given,
PQ || ST, ∠PQR = 110° and ∠RST = 130°
Construction,
A line XY parallel to PQ and ST is drawn.
∠PQR + ∠QRX = 180° (Angles on the same side of transversal.)
⇒ 110° + ∠QRX = 180°
⇒ ∠QRX = 70°
Also,
∠RST + ∠SRY = 180° (Angles on the same side of transversal.)
⇒ 130° + ∠SRY = 180°
⇒ ∠SRY = 50°
Now,
∠QRX +∠SRY + ∠QRS = 180°
⇒ 70° + 50° + ∠QRS = 180°
⇒ ∠QRS = 60°
Hope it helps..
Answer:
Given :PQ || ST, ∠PQR = 110° and ∠RST = 130°
Construction:A line XY parallel to PQ and ST is drawn.
∠PQR + ∠QRX = 180° (Angles on the same side of transversal.)
110° + ∠QRX = 180°
∠QRX = 180° - 110°
∠QRX = 70°
Also,∠RST + ∠SRY = 180° (Angles on the same side of transversal.)
130° + ∠SRY = 180°
∠SRY = 50°
Now,∠QRX +∠SRY + ∠QRS = 180°
70° + 50° + ∠QRS = 180°
∠QRS = 60°
Hence, ∠QRS = 60°