Math, asked by sonusinghlion193, 1 year ago

If pq+qr+rp=0 then find the value of p^2/p^2-qr +q^2/q^2-rp + r^2/r^2-pq

Answers

Answered by MaheswariS
12

Answer:

The value of

\bf\frac{p^2}{p^2-qr}+\frac{q^2}{q^2-rp}+\frac{r^2}{r^2-pq}       is 1

Step-by-step explanation:

Given:

pq+qr+rp=0.......(1)

Now,

\frac{p^2}{p^2-qr}+\frac{q^2}{q^2-rp}+\frac{r^2}{r^2-pq}

=\frac{p^2}{p^2+pq+rp}+\frac{q^2}{q^2+pq+qr}+\frac{r^2}{r^2+qr+rp}       (Using (1))

=\frac{p^2}{p(p+q+r)}+\frac{q^2}{q(p+q+r)}+\frac{r^2}{r(p+q+r)}

=\frac{p}{p+q+r}+\frac{q}{p+q+r}+\frac{r}{p+q+r}

=\frac{p+q+r}{p+q+r}

=1

\implies\boxed{\bf\frac{p^2}{p^2-qr}+\frac{q^2}{q^2-rp}+\frac{r^2}{r^2-pq}=1}

Similar questions