Math, asked by imbasudevdas, 3 months ago

If pqr=1,then solve 1÷(1+p+1/q)+1÷(1+q+1/r)+1÷(1+r+1/p)

Answers

Answered by mathdude500
3

Understanding the concept:-

  • Here denominator of first term is (pq+q+1).
  • We obtain same denominator for second and third term.
  • To do so, we have to put value of r from pqr = 1.
  • it means

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \:  \dfrac{1}{r}  = pq \: and \: r \:  = \dfrac{1}{pq }

\bf \:  ⟼ Let's \:  do  \: the  \: problem \:  now !!

─━─━─━─━─━─━─━─━─━─━─━─━─

Consider

\sf \:  \dfrac{1}{1 + p + \dfrac{1}{q} } +  \dfrac{1}{1 + q + \dfrac{1}{r} }  +  \dfrac{1}{1 + r + \dfrac{1}{p} }

\sf \:  =  \:  \dfrac{q}{q + pq + 1}  + \dfrac{1}{1 + q  + pq }  + \dfrac{1}{1 + \dfrac{1}{pq}  + \dfrac{1}{p} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \:   [\because \: \dfrac{1}{r}  = pq \: and \: r \:  = \dfrac{1}{pq }]

\sf \:   =  \:  \dfrac{q}{q + pq + 1}  + \dfrac{1}{1 + q  + pq } + \dfrac{1}{\dfrac{pq  + 1 + q }{pq } }

\sf \:   =  \:  \:  \dfrac{q}{q + pq + 1}  + \dfrac{1}{1 + q  + pq } + \dfrac{pq }{pq  + 1 + q }

\sf \:   =  \:  \dfrac{q + 1 + pq }{q + pq + 1}

\sf \:   =  \:  \dfrac{ \cancel{q + pq  + 1}}{ \cancel{q + pq + 1}}

\sf \:   =  \: 1

─━─━─━─━─━─━─━─━─━─━─━─━─

Answered by XxArmyGirlxX
1

</p><p>\frac{1}{ {1 + p + q}^{ - 1} }  +   \frac{1}{ {1 +q  +r }^{ - 1} }  +  \frac{1}{ {1 + r + p}^{ - 1} }  \\  \\   = \frac{1}{ {1 + p + q}^{ - 1} }   +  \frac{ {q}^{ - 1} }{ {q}^{ - 1} + 1 +  {q}^{ - 1} {r}^{ - 1}  }  +  \frac{p}{p + pr + 1}  \\  \\  =  \frac{1}{1 + p +  {q}^{ - 1} }  +  \frac{ {q }^{ - 1} }{1 +  {q}^{ - 1} + 1 }  \\  \\ (∴pqr = 1⇒ {(qr)}^{ - 1}  = p \:⇒  {q}^{ - 1}  {r}^{ - 1}  = p \: and \: pr =  {q}^{ - 1})  \\  \\ =  \frac{1 +  {q}^{ - 1} + p }{1 +  {q}^{ - 1} + p}  = 1

Similar questions