if ∆PQR ≈ ∆ABC , then angles P =50° , angle
Q= 70° Find angle A and B of ∆ ABC
Answers
Answer:
In △PQR using angle sum property of triangle.
∠P+∠Q+∠R=180
∘
∠P+50
∘
+70
∘
=180
∘
⇒∠P=180
∘
−120
∘
=60
∘
Now △PQR∼△XYZ
As corresponding angles of similar triangles are equal.
⇒∠X=∠P=60
∘
and ∠Y=∠Q=50
∘
⇒∠X+∠Y=60
∘
+50
∘
=110
∘
Answer:
In △PQR using angle sum property of triangle.
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZ
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘ and ∠Y=∠Q=50
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘ and ∠Y=∠Q=50 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘ and ∠Y=∠Q=50 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘ and ∠Y=∠Q=50 ∘ ⇒∠X+∠Y=60
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘ and ∠Y=∠Q=50 ∘ ⇒∠X+∠Y=60 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘ and ∠Y=∠Q=50 ∘ ⇒∠X+∠Y=60 ∘ +50
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘ and ∠Y=∠Q=50 ∘ ⇒∠X+∠Y=60 ∘ +50 ∘
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘ and ∠Y=∠Q=50 ∘ ⇒∠X+∠Y=60 ∘ +50 ∘ =110
In △PQR using angle sum property of triangle.∠P+∠Q+∠R=180 ∘ ∠P+50 ∘ +70 ∘ =180 ∘ ⇒∠P=180 ∘ −120 ∘ =60 ∘ Now △PQR∼△XYZAs corresponding angles of similar triangles are equal.⇒∠X=∠P=60 ∘ and ∠Y=∠Q=50 ∘ ⇒∠X+∠Y=60 ∘ +50 ∘ =110 ∘