Math, asked by vijayalaxmikorra143, 3 months ago

If ∆PQR <P = 2 <Q and <R = 3 <Q. Calculate the angles of ∆PQR

Answers

Answered by itzPapaKaHelicopter
2

\huge \fbox \pink{Answer:}

Given:

∠P = 2 ∠Q  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... (1)

∠R = \frac{3}{2}  ∠Q \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  .. (2)

Also sum of angles of a triangle is 180 degree.

Also sum of angles of a triangle is 180 degree.From equation (1) and (2):

⇒∠P +  ∠Q + ∠R = 180°

⇒2∠Q + ( \frac{3}{2} )∠Q + ∠Q = 180°

⇒∠Q =  \frac{180° \times 2}{9}  = 40°

so  , \: ∠P = 2(40°) = 80° \:

( \frac{ 3}{2} )20° = 60°

 \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Similar questions