Physics, asked by siddu3152, 2 months ago

If pressure 'P', velocity 'V' and time 'T' are taken
as the functional quantities, find the dimensional
formula of force
(A) PV2T2

(B) P2VT2
(C) P2v2T2
(D) PVT​

Answers

Answered by TheBrainlistUser
3

\large\underline\mathfrak\red{Answer \:  :- }

(A) PV²T²

\large\underline\mathfrak\red{Explanation  \: :- }

⟼ \sf{F = P {}^{ \alpha } V {}^{ \beta } T {}^{ \gamma } }

or,

\sf{ [M¹L¹T {}^{ - 2} ]=[M {}^{ \alpha }  L  {}^{ -  \alpha  +  \beta } T  {}^{ - 2 \alpha  -  \beta  +  \gamma } ]}

\sf{ i.e. \: [M¹L¹T {}^{ - 2} ]=[M {}^{ \alpha }  L  {}^{ -  \alpha  +  \beta } T  {}^{ - 2 \alpha  -  \beta  +  \gamma } ]}

Hence We have,

\sf{ \alpha  = 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\ \sf{ -  \alpha  +  \beta  =1 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \sf{ - 2 \alpha  -  \beta  +  \gamma  =  - 2}

Solving these we get

\sf{ \alpha  = 1} \\ \sf{ \beta  = 2} \\ \sf{ \gamma  = 2}

Hence,

\sf{P = 1  } \\ \sf{V = 2} \\ \sf{T = 2  }

\bf\pink{⟼ PV²T²}

______________________________________

Learn more :

If (alpha - bit q), alpha and (alpha + Bit a) are zeroes of the polynomial 2x°-16x +15x-2....

https://brainly.in/question/40344241

Similar questions