Math, asked by bhagwatsiddhi65, 3 months ago

If principle (P)= ₹5000 Rate (R) =8p.c.p.a. Duration (N)= 3years Amount (A)= ? , Compound interest= ?

₹6298.56,₹1298.56
₹5803.63,₹2198.56
₹6982.65,₹1982.57
₹6842.98,₹2198.63​

Answers

Answered by Anonymous
16

 \\ \\ \\  \sf{\underline{\underline{ \purple{ \huge{Given:}}}}}

✰ Principle ( P ) = ₹5000

✰ Rate ( r ) = 8%

✰ Time ( n ) = 3 years

 \\ \\ \\  \sf{\underline{\underline{ \purple{ \huge{To \: Find:}}}}}

✠ Amount ( A )

✠ Compound interest ( C.I. )

 \\ \\ \\ \sf{\underline{\underline{ \purple{ \huge{Solution:}}}}} \\ \\

ㅤㅤㅤㅤㅤ

When interest is compounded yearly the formula for finding amount is:

 {\bigstar{ \large {\boxed {\green {\sf{A = P{ {\bigg(1}  +  \dfrac{r}{100}{\bigg)}^{n} } }}}}}} \\

ㅤㅤㅤㅤㅤ

where

A = amount;

P = principal

r = rate of interest compounded

n = number of years

 \\  \\  \implies \sf{A = 5000{ {\bigg(1}  +  \dfrac{8}{100}{\bigg)}^{3} } }

\\  \\  \implies \sf{A = 5000 {{ \bigg(}  \dfrac{100 + 8}{100}{\bigg)}^{3} } }

\\  \\  \implies \sf{A = 5000 {{ \bigg(}  \dfrac{108}{100}{\bigg)}^{3} } }

\\  \\  \implies \sf{A = 5000 {{ \bigg(}  \dfrac{54}{50} {\bigg)}^{3} } }

\\  \\  \implies \sf{A = 5000 \times  {{ \bigg(}  \dfrac{27}{25} {\bigg)}^{3} } }

\\  \\  \implies \sf{A = 5000 \times   \dfrac{27}{25} \times \dfrac{27}{25} \times \dfrac{27}{25} }

\\  \\ {\blue { \implies \sf{A = 6298.56}}}

ㅤㅤㅤㅤㅤ

Amount = { \green{\boxed {\sf{ \gray{ Rs. \: 6298.56}}}}}

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

Now, let's find out compound interest ( C.I. )

  {\bigstar{ \large {\boxed {\green {\sf{C.I. = A - P}}}}}}

 \\ \implies{ \sf{C.I.  = 6298.56 - 5000}}

\\ {\blue {\implies{ \sf{C.I. = 1298.56}}}}

ㅤㅤㅤㅤㅤ

Compound interest (C.I.) = {\green{\boxed {\sf{ \gray{ Rs \: 1298.56}}}}}

ㅤㅤㅤㅤㅤ

▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬

Answered by thebrainlykapil
27

Given :-

  • Principal (P) = Rs,5000
  • Rate (R) = 8%
  • Time (n) = 3years

 \\

To Find :-

  • Amount and Compound Interest

 \\

Formulas :-

 \red \bigstar \:  \:{ \large   \underline{\boxed {\sf{Amount  \: =  \: Principal \: { {\bigg(1} + \dfrac{rate}{100}{\bigg)}^{n} } }}}}  \:  \: \red  \bigstar \\ \\ \blue \bigstar \:  \:{ \large   \underline{\boxed {\sf{Compound \: interest\: =  \: Amount \:  -  \:  Principal}}}}\:  \: \blue \bigstar\\

 \\

Solution :-

 {:} \longrightarrow \:  \:  {\sf{Amount  \: =  \: Principal \: { {\bigg(1} + \dfrac{rate}{100}{\bigg)}^{n} } }} \\ \\  {:} \longrightarrow \:  \:  {\sf{Amount  \: =  \: 5000 \: { {\bigg(1} + \dfrac{8}{100}{\bigg)}^{3} } }} \\  \\   {:} \longrightarrow \:  \:  {\sf{Amount  \: =  \: 5000 \: { {\bigg(} \dfrac{108}{100}{\bigg)}^{3} } }} \\  \\ {:} \longrightarrow \:  \:  {\sf{Amount  \: =  \: 5 \cancel{000} \:  \times  \:  \dfrac{108}{1 \cancel{00}} \:  \times  \:  \dfrac{108}{10 \cancel0} \:  \times  \:  \dfrac{108}{100}}} \\  \\{:} \longrightarrow \:  \:  {\sf{Amount  \: =  \:  \cancel5 \:  \times  \:  \dfrac{108 \:  \times  \: 108 \:  \times  \: 108}{ \cancel{1000}}  }} \\  \\ {:} \longrightarrow \:  \:  {\sf{Amount  \: =\:  \dfrac{108 \:  \times  \: 108 \:  \times  \: 108}{ 200}  }} \\  \\ {:} \longrightarrow \:  \:  {\sf{Amount  \: =\:  \dfrac{11664 \:  \times  \: 108}{ 200}  }} \\  \\ {:} \longrightarrow \:  \:  {\sf{Amount  \: =\:  \dfrac{ 1,259,712}{ 200}  }} \\  \\  {:} \longrightarrow \:  \:  {\sf \boxed{ \bf{Amount  \: =\:Rs, 6298.56}}}  \: \green \bigstar \\  \\

________________

\longmapsto \:  \: {\sf{Compound \: interest\: =  \: Amount \:  -  \:  Principal}} \\  \\ \longmapsto \:  \: {\sf{Compound \: interest\: =  \: 6298.56 \:  -  \:  5000}} \\  \\ \longmapsto \:  \: {\sf \boxed{ \bf{Compound \: interest\: =  \: Rs,1298.56}}}  \:  \: \green \bigstar \\  \\

________________

\qquad \therefore\: \sf{ Amount \: = \underline {\underline{ Rs,6298.56}}}\\

\qquad \therefore\: \sf{ Compound\: Interest \: = \underline {\underline{ Rs,1298.56}}}\\

________________

Similar questions