Math, asked by sneerajkumar204, 9 months ago

if product of intercepts made by straight line xtan alpha + y sec alpha = 1 on the coordinaate axes is equal to sinalpha find alpha

Answers

Answered by pulakmath007
13

SOLUTION

GIVEN

The product of intercepts made by straight line

 \sf{ x\tan \alpha  + y \sec \alpha  = 1 }

on the coordinate axes is equal to  \sf{ \sin \alpha }

TO DETERMINE

 \sf{ The \:  value  \: of \:  \:  \alpha }

EVALUATION

The given equation of the line is

 \sf{ x\tan \alpha  + y \sec \alpha  = 1 }

Which can be rewritten as

 \displaystyle \sf{  \frac{x}{ \cot \alpha }  +  \frac{y}{ \cos \alpha }  = 1 }

 \sf{Thus  \: the \:  line  \: intersects \:  x  \: axis \:  at \:  \: ( \cot \alpha , 0)}

 \sf{and \:  \:  x  \: axis \:  at \:  \: ( 0,\cos \alpha )}

So the product of intercepts

 =  \sf{ \cot \alpha . \cos \alpha  \: }

 =  \displaystyle \sf{ \frac{ { \cos}^{2} \alpha  }{ { \sin}  \alpha }  \: }

Now by the given condition

  \displaystyle \sf{ \frac{ { \cos}^{2} \alpha  }{ { \sin}  \alpha }   = { \sin}  \alpha \: }

 \implies  \displaystyle \sf{  { \cos}^{2} \alpha    = {{ \sin}}^{2}  \alpha }

 \implies  \displaystyle \sf{  { \cos} \alpha    = \pm \:  {{ \sin}} \alpha }

 \implies  \displaystyle \sf{  { \cot} \alpha    = \pm 1 }

 \implies  \displaystyle \sf{  { \cot} \alpha    = \pm  \cot \frac{\pi}{4}  }

 \implies  \displaystyle \sf{   \alpha    = n\pi \pm \:  \frac{\pi}{4}  }

 \displaystyle \sf{One \:  of  \: the \:  possible \:  values \:  of \:  \alpha  \:  is  \:  \:  \frac{\pi}{4} }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the equation of straight line passing through the point (-4,5) and making equal intercepts on the coordinate axis.

https://brainly.in/question/25257443

Similar questions