Math, asked by aryakashyap9345, 6 hours ago

If product of the zeroes of quadratic polynomial f(x) = x2 – x – m is –12, then find the value of m.

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given polynomial is

\red{\rm :\longmapsto\: {x}^{2} - x - m \: is \: such \: that \: product \: of \: zeroes \: is \:  - 12}

We know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

So, on substituting the values, we get

\rm :\longmapsto\: - 12 = \dfrac{ - m}{1}

\rm :\longmapsto\: - 12 =  - m

\rm :\longmapsto\: 12 =  m

\rm \implies\:\boxed{\tt{ m \:  =  \: 12 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma \alpha   =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Answered by EmperorSoul
12

\large\underline{\sf{Solution-}}

Given polynomial is

\red{\rm :\longmapsto\: {x}^{2} - x - m \: is \: such \: that \: product \: of \: zeroes \: is \:  - 12}

We know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

So, on substituting the values, we get

\rm :\longmapsto\: - 12 = \dfrac{ - m}{1}

\rm :\longmapsto\: - 12 =  - m

\rm :\longmapsto\: 12 =  m

\rm \implies\:\boxed{\tt{ m \:  =  \: 12 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma \alpha   =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions