Math, asked by eratzinfantry, 4 days ago

if products of roots of the equation ax²+x+2=0 is 2 , then the sum of roots is​

Answers

Answered by sasmitagadtiasasmita
0

Answer:

product of roots is c/a=2/a=2

=a=2/2

=a=1

sum of roots is -b/a=-1/a

=-1/1

=-1

Hope this helpful to you

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\: \alpha,  \beta  \: are \: the \: roots \: of \:  {ax}^{2} + x + 2 = 0

Now, it is given that,

\rm :\longmapsto\: \alpha  \beta  = 2

We know,

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  \beta  = \dfrac{2}{a}

\rm :\longmapsto\:2  = \dfrac{2}{a}

\bf\implies \:a \:  =  \: 1

Now, we know that

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  +  \beta  =  -  \: \dfrac{1}{a}

On substituting the value of a, we get

\rm \implies\: \alpha  +  \beta  =  -  \: \dfrac{1}{1}

 \red{\rm \implies\:\boxed{ \tt{ \:  \alpha  +  \beta  \:  =  \:  -  \: 1 \: }}}

More to know :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: roots \: of \: a {x}^{3}  + b {x}^{2} +  cx + d = 0, \: then}

 \green{\boxed{ \bf{ \:  \alpha   + \beta   + \gamma  =  - \dfrac{b}{a}}}}

 \green{\boxed{ \bf{ \:  \alpha  \beta   + \beta \gamma    + \gamma   \alpha =   \dfrac{c}{a}}}}

 \green{\boxed{ \bf{ \:  \alpha  \beta  \gamma \:   =  \:  - \:  \dfrac{d}{a}}}}

Similar questions