Math, asked by mohanadevipreethika, 6 months ago

if pth, qth, rth term of an gp are a, b,c respectively prove that a q-r ,br-p ,cp-q =1​

Answers

Answered by amansharma264
8

EXPLANATION.

→ Pth, qth, rth term of an Gp are a, b, c

 \sf  \: to \: prove \:  =  \:   {a}^{q - r}  {b}^{r - p}  {c}^{p - q} = 1

 \sf  \:as \: we \: know \: that \\  \\  \sf  \:nth \: terms \: of \: an \: gp = ar {}^{n - 1}  \\  \\ \sf \:first \: term \: of \: an \: gp \:  = a \\  \\  \sf  \:common \: ratio \:  = r

 \sf  \: {p}^{th} \: term \: of \: gp = a \\  \\   \sf \: \:  {Ar}^{p - 1}  = a \\  \\  \sf  \: a \:  =  {Ar}^{p - 1}  \\  \\ \sf : \implies \:  {a}^{q - r} = (  {Ar}^{p - 1} ) {}^{q - r} .......(1)

 \sf  \:  {q}^{th} \: term \: of \: gp \:  = b \\  \\  \sf  \:    {Ar}^{q \: - 1}   = b \\  \\  \sf  \: b \:  =  {Ar}^{q \: - 1}  \\  \\  \sf : \implies \:  { b }^{r - p} = (  {Ar}^{q \: - 1} ) {}^{r - p} \:  \: ........(2)

 \sf  \:  {r}^{th}  \: term \: of \: gp \:  = c \\  \\  \sf  \:  {Ar}^{r \: - 1} = c \\  \\ \sf  \: c \:  =   {Ar}^{r \: - 1} \\  \\ \sf :  \implies \:  {c}^{p - q}  = ( {Ar}^{r \: - 1}) {}^{p - q}  \:  \: ......(3)

 \sf:  \implies \: put \: the \: value \: in \:equation \\  \\  \sf :  \implies \:  {a}^{q - r}  {b}^{r - p}  {c}^{p - q}  \\  \\  \sf :  \implies \:  ({Ar}^{p \: - 1} ){}^{q - r}  \times ( {Ar}^{q \: - 1}) {}^{r - p}  \times ( {Ar}^{r \: - 1}) {}^{p - q}  \\  \\  \sf :  \implies \: A {}^{q - r} {r}^{(p - 1)(q - r)}   \times A {}^{r - p}  {r}^{(q - 1)(r - p)}  \times A {}^{p - q}  {r}^{(r - 1)(p - q)}

 \sf :  \implies \: A {}^{q - r} A {}^{r - p}A {}^{p - q}   \times  \: r {}^{(p - 1)(q - r)}  {r}^{(q - 1)(r - p)} {r}^{(r - 1)(p - q)} \\  \\ \sf :  \implies \:  A {}^{(q - r) + (r - p)  + (p - q)}   \times  \: {r}^{(p - 1)(q - r) + (q - 1)(r - p) +  (r - 1)(p - q)}   \\  \\ \sf :  \implies \: A {}^{0}  \times  {r}^{(pq - pq - q + q + r - r + p - p + qr - qr + qp - qr)}  \\  \\ \sf :  \implies  \: A {}^{0}  \times  {r}^{0}  \\  \\ \sf :  \implies \:  1 = proved

Similar questions