If pth,qth,rth them of an A.P
respectivly are a,b,c Then find the value of a(q-r)+b(r-p)+c(p-q)
Answers
Answer:
☆c.(p-q)d+a.(q-r)d+b.(r-p)d=0
Step-by-Step explanation:
Let,
the first term=A
Common Difference=d
pth term=a
qth term=b
rth term=c
a=A+(p-1)d ----------- i
b=A+(q-1)d ----------- i
c=A+(r-1)d -----------iii
Subtracting equation ii from i , iii from ii ,i from iii
a-b=(p-q)d ----------- iv
b-c=(q-r)d ------------ v
c-a=(r-p)d ------------ vi
Multiplying equation iv by c, v by a and vi by b
(a-b).c=c.(p-q)d ----------- vii
(b-c).a=a.(q-r)d ------------ viii
(c-a).b=b.(r-p)d ------------ix
Adding equation vii,viii and ix
(a-b)c+(b-c)a+(c-a)b=c.(p-q)d+a.(q-r)d+b.(r-p)d
ac-bc+ab-ac+bc-ab=c.(p-q)d+a.(q-r)d+b.(r-p)d
ac-ac+bc-bc+ab-ab=c.(p-q)d+a.(q-r)d+b.(r-p)d
0=c.(p-q)d+a.(q-r)d+b.(r-p)d
☆c.(p-q)d+a.(q-r)d+b.(r-p)d=0
Hope it helps you.
Please mark it as brainlist.
Answer:
☆c.(p-q)d+a.(q-r)d+b.(r-p)d=0
Step-by- explanation:
Let,
the first term=A
Common Difference=d
pth term=a
qth term=b
rth term=c
a=A+(p-1)d ----------- i
b=A+(q-1)d ----------- ii
c=A+(r-1)d -----------iii
Subtracting equation ii from i , iii from ii ,i from iii
a-b=(p-q)d ----------- iv
b-c=(q-r)d ------------ v
c-a=(r-p)d ------------ vi
Multiplying equation iv by c, v by a and vi by b
(a-b).c=c.(p-q)d ----------- vii
(b-c).a=a.(q-r)d ------------ viii
(c-a).b=b.(r-p)d ------------ix
Adding equation vii,viii and ix
(a-b)c+(b-c)a+(c-a)b=c.(p-q)d+a.(q-r)d+b.(r-p)d
ac-bc+ab-ac+bc-ab=c.(p-q)d+a.(q-r)d+b.(r-p)d
ac-ac+bc-bc+ab-ab=c.(p-q)d+a.(q-r)d+b.(r-p)d
0=c.(p-q)d+a.(q-r)d+b.(r-p)d
☆c.(p-q)d+a.(q-r)d+b.(r-p)d=0