Math, asked by mehertejraj335, 6 months ago

If pth terem of an AP is 1/q and qth term 1/p
prove that the sum of the first
'Pq' terms is 2 (pq+1)
-te
P​

Answers

Answered by Anonymous
1

Answer:

AnswEr:

\begin{gathered}\begin{gathered}\frak{Given}\begin{cases} \sf{First\:Term\:(a)\:=\:17}\\ \sf{Last\:Term\:(L)\;=\; 350} \\ \sf{Common\: Difference\:(d)\:=\; 9}\end{cases}\end{gathered}\end{gathered}

Given

FirstTerm(a)=17

LastTerm(L)=350

CommonDifference(d)=9

\:\:\:\:\;\:\;\footnotesize\bold{\underline{\underline{\sf{\red{Formula\:For\:the\: Last\:Term\:is \:-}}}}}

FormulaFortheLastTermis−

\dag\;\:\large{\underline{\boxed{\sf{\purple{l\:=\; a +(n -1)d}}}}}

l=a+(n−1)d

\large\bold{\underline{\sf \green{Putting\:Values-}}}

PuttingValues−

:\implies\sf \: 350 = 17 + (n -1)9::⟹350=17+(n−1)9:

\implies\sf \:\cancel\dfrac{333}{9} = (n -1)⟹

9

333

=(n−1)

:\implies\sf \: (n -1) = 37:⟹(n−1)=37:⟹(n−1)=37:⟹(n−1)=37

:

\implies\sf \: n = 37 + 1:⟹n=37+1⟹n=37+1:⟹n=37+1

:\implies\large\boxed{\sf{\purple{n\:=\;38}}}::⟹

n=38

:

\small\bold{\underline{\sf{\pink{Therefore\:Given\:AP\: Contains\: 38\:Terms.}}}}

ThereforeGivenAPContains38Terms.

\large\bold{\underline{\sf{Now\: Finding\: Sum -}}} NowFindingSum−

:\implies\sf \: S_{n} = \dfrac{n}{2} (a +l)::⟹S

:\implies\sf \: S_{38} = \dfrac{38}{2}(17 + 350):⟹S

:\implies\sf \: 19 \times 367::⟹19×367:

:\implies\large\boxed{\sf{\purple{6973}}}::⟹

\small\bold{\underline{\sf{\red{Sum \:of \: the \:Terms\: of \: the \: Given\: AP\; is \: 6973.}}}}

Similar questions